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Although our names appear as co-authors in the above article (Haidvogel et al. (2008) [1],
hereafter H2008), we were not aware of its existence until after it was published. In reading
the article, we discovered that a significant portion of it (� 40%, or 10 pages) repeats three
large fragments from our own previously published work, Shchepetkin and McWilliams
(2005) [2] (hereafter SM2005), but now presented in such a way that the motivation for
the specific algorithmic choices made in ROMS and the relations among the different model
components are no longer clear. The model equations appearing in H2008, Section 2.1
(taken from an earlier article, Haidvogel et al. (2000) [3]) are not entirely consistent with
the actual equations solved in the ROMS code, resulting in contradictions within H2008
itself. In our view the description in H2008 does not constitute a mathematically accurate
statement about the hydrodynamic core of ROMS. The purpose of this note is to clarify and
correct this, as well as to explain some of the algorithmic differences among ROMS versions
now in use.

� 2009 Elsevier Inc. All rights reserved.
1. Overview

As a review article, H2008 is expected to provide readers with a balanced overview of the current status of development,
capabilities, and applications of the ROMS model, which at this time has passed its tenth anniversary as a collaborative pro-
ject. Naturally, with this goal in mind, we expected this article to reuse previously published material with a reasonable de-
gree of summary and condensation. However, we discovered that H2008 cuts and pastes three large chunks from SM2005
and reuses the model-formulation section from Haidvogel et al. [3] in a way that impairs the original relations between the
parts. There are also omissions of material that is critical for understanding the ROMS code kernel design, and even several
reversals of the original meaning of SM2005. In retrospect, we characterize the latter as a mathematical optimization study
using a somewhat engineering approach where the attention to how different algorithmic parts interact among each other
takes precedence over the novelty of individual components. This changes the burden of proof from demonstrating the func-
tionality of the model to showing that it cannot be made more efficient while staying within the class of split-explicit, free-
surface models. Accordingly, SM2005 surveys a wide range of possible time-stepping algorithms, even thought only a few
are actually used in the code. It also indicates the possibility of multiple variants of the code where competitive algorithms
are identified (cf., Section 5). The purpose of this commentary is to diagnose and partially remedy the possible confusions
inadvertently caused by publication of H2008, and to add some information that may help readers understand relations
. All rights reserved.
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among several variant algorithmic approaches within the ROMS family of codes. Much of our discussion is quite technical as
are the parts we refer to in H2008. In the absence of alternative community conventions for communicating code design
specifications, it is important that the published algorithms be accurately expressed. A recent, more complete discussion
of the design criteria for an oceanic model such as ROMS can be found in Shchepetkin and McWilliams [4]. Having said that,
we have no doubt about the various illustrations of successful ROMS solutions and forecasts that comprise the second half of
H2008, starting with Section 4.

1.1. Major critical comments

� Section 2.1, Hydrodynamic Core, H2008 presents the model equations in a shortened and simplified version (i.e., omitting
horizontal curvilinear coordinates) of Section 2.1 in [3] (hereafter DAMEE2000).1 DAMEE2000, in its turn, is drawn from
Song and Haidvogel (1994) [5] (hereafter SH94). The way the continuity equation is written—Eq. (4) in H2008 (same as
Eq. (6) in DAMEE2000) vs. Eq. (2.26) in SH94—indicates an unawareness that the way the vertical coordinate is perturbed
by the free-surface elevation, f, in ROMS is different from that in SH94 since
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for ROMS vertical coordinate.2 This is explained in detail in Section 2. The change of vertical coordinate also leads to a change
in the definition of vertical velocity in transformed coordinates, which in turn affects constancy-preservation for tracers. This
is further discussed in Sections 3 and 4.
� In SM2005, Section 2 surveys a wide range of time-stepping algorithms, Section 4 discusses several possible choices for

building an actual code, but Section 5 describes a specific combination of algorithms for a particular version of the code.
However, because Section 3.6 of H2008 just follows Section 5 of SM2005 with no discussion of alternatives, a reader easily
gets the impression that the ROMS kernel is just the algorithm formulated there as Stages 1–6. This is not accurate. In fact,
there are four well-identified variants of hydrodynamic time-stepping kernel for the ROMS-family codes currently in use
(Section 5). Furthermore, the specific ROMS kernel described in Section 3.6 in H2008 was not used in the examples
reported in the following Section 4 in H2008, rather an alternative variant was used instead. Section 5 clarifies this
situation.

� Section 3.1 in H2008 repeats the beginning of Section 1.1 in SM2005, while omitting a 3/4-page discussion there that ends
with ‘‘Throughout this study we assume that our vertical system of coordinates is no longer separable . . .”. In contrast, Sec-
tion 3.1 in H2008 ends with Eq. (9) [same as Eq. (1.5) in SM2005], which is z0ðx; y;rÞ ¼ SðrÞ � hðx; yÞ and is a special-case
example of a separable transformation. After Eq. (9), H2008, there is only a single sentence referring to the S-coordinate in
SH94. This sentence is also taken from SM2005. However, cutting off the discussion here inadvertently leaves an impres-
sion that the ROMS vertical coordinate is either Eq. (9) in H2008 or is the same as in SH94. This is not consistent with the
original meaning of SM2005 which deliberately leaves the design of vertical coordinate open, while facilitating implemen-
tation of alternative coordinates, nor does it reflect the actual current state of ROMS where newer, more advanced options
became available (Section 2).

� Section 3.2, the last sentence on p. 3599 in H2008 states, ‘‘Except where noted otherwise (e.g., Section 3.7), a centered sec-
ond-order finite-difference approximation is adopted in the horizontal”. This is misleading. Section 3.7 in H2008 describes
only two algorithms: a QUICK-type, third-order upstream-biased interpolation used to compute advective fluxes and a
conservative parabolic spline reconstruction optionally used for vertical advection and viscosity and diffusion. Besides
these there are many other algorithms employed in the code that go beyond second-order differencing, e.g., the pres-
sure-gradient force (PGF) computed using monotonized cubic interpolations in all directions [6]; a similar operator for
advection of tracers; a positive-definite MPDATA advection scheme [7] for sea-ice concentration and thickness, biological
tracers, and sediment concentration; a monotonized, high-order vertical advection scheme for vertical migration of bio-
logical species and sinking of sediments, etc. Most importantly, the whole spirit of spatial discretization in a hydrodynamic
code like ROMS is finite-volume rather than finite-difference.

� Section 3.2 in H2008 repeats Section 1.3 in SM2005, but now with a different title, Spatial Discretization. With the excep-
tion of the first two sentences, the only topic covered in this section is how the vertical coordinate is perturbed when f
deviates from its resting state, which is reflected in the original title, Perturbed Vertical Coordinate System. In SM2005
the sole purpose of Section 1.2 is to introduce the proportional perturbation of grid-box heights [Eq. (1.10) there] as
the framework for constructing a conservative and constancy-preserving mode splitting procedure which also incorpo-
rates fast-time-averaging for barotropic fields: at first, to expose the problem in the following Section 1.3, and subse-
quently in Sections 3 and 4 describe in detail an algorithm having all the needed properties. H2008 does not makes
this emphasis, and in fact, as we see later, misses entirely the aspect of compatibility between the fast-time-averaging
procedure for the barotropic mode and the slow-time discrete continuity equation, which is the basis for constancy-pre-
serving time stepping algorithm for tracers.
a Assimilation and Model Evaluation Experiments.
symbols appearing here have the same meaning as in the articles cited.
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� Section 3.3 in H2008 repeats Section 1.3 in SM2005 that originally had the title Conflict between integral and constancy-
preservation for tracers. The word ‘‘conflict” has now been removed from the title, and the discussion at the end is short-
ened by removing the sentence, ‘‘Perhaps the most delicate matter here is replacement of f at nþ 1 with its fast-time-
averaged value: not doing so leaves room for aliasing error, while the replacement makes the ‘‘slow-time” discrete 2D con-
tinuity equation . . .hold only within the order of temporal accuracy, but no longer exactly even though it is exact at every
time step)” (SM2005). Both changes impair the meaning of the section. In fact, the entire purpose of Section 1.3 in SM2005
is to emphasize that in an oceanic model with a changing vertical coordinate (due to changing f) and with different time-
stepping algorithms for barotropic and baroclinic sub-systems, having exact finite-volume, finite-time-step consistency of
the 3D, slow-time discrete continuity equation is not automatic; a special procedure must be designed to guarantee it.
This applies to both split-explicit and implicit models. (If SM2005 were written today, three more references would be
cited here: [8–10].) Section 1.3 in H2008 merely states that there is a conflict but provides no solution. The conflict is
resolved in Section 3.2 in SM2005 by constructing a 2-way fast-time-averaging procedure that computes five fields –
hfinþ1

; hUinþ1
; hVinþ1, along with hhUiinþ1=2 and hhViinþ1=2 – that satisfy Eq. (3.39), the slow-time, vertically integrated con-

tinuity equation for fast-time-averaged values. Then before performing the corrector step for tracers, the 3D fluxes are
forced to have exactly the same vertical integrals as hhUiinþ1=2 and hhViinþ1=2. H2008 provides no explanation and makes lit-
tle mention of the fast-time-averaging procedure in ROMS; e.g., there is no evidence of even the existence of secondary-
weighted fast-time-averaged barotropic fluxes (denoted by hh:ii), with the exception of the unexplained symbol hhUiinþ1=2 in
Stage 5 on p. 3608. The ending sentences of Section 3.1 in H2008 are: ”Alternatively, one might distribute the mismatch of
discrepancy in (25) throughout the water column so that the top boundary condition holds but at the expense of discrep-
ancy in (21) [SH94]. In either case, a conservative update of the tracer fields (16) loses its constancy-preservation prop-
erty.” This unavoidably gives the reader the impression that ROMS is not different from SH94 with respect to this matter,
which is false.

� p. 3607, Stage 1 and Stage 2: The original text in SM2005 for these stages mentions ‘‘the use of artificial compressibility
equation (i.e., the pseudo-compressible algorithm)”, but these words are removed in H2008. This leads to a loss of mean-
ing because a finite-volume time step requires new-time-step grid-box heights in order to compute a control volume. This
cannot be done at this stage because f is not yet updated. Nevertheless, H2008 states, ‘‘this step is constancy-preserving,
but not conservative”, and then explains why it is acceptable at this stage. In Section 4, we provide an overview of con-
servative and constancy-preserving time-stepping algorithms for tracers, focusing on the role of the continuity equation in
the presence of f – 0.

� Eq. (65) on p. 3609 and Table 1 on p. 3611 in H2008: This definition of model skill is also known as the index of agreement
[11,12]. Willmott argues that more standard measures, such as the correlation coefficient between model and data, may
be insufficient and often misleading. Eqs. (1)–(4) in Willmott [12] distinguish four kinds of errors: mean bias, quadratic
variance (related to root-mean-square error) with and without subtracting mean bias, and mean absolute error. The pro-
posed index of agreement is a single composite measure sensitive to all these kinds of errors, and it is intended for cross-
comparison among several different models. In simple cases where all errors are presumed to be of a single type, the cri-
terion can be applied to rank the overall performance. However, in application to oceanic modeling it is an oversimplifi-
cation because the index cannot distinguish between the different types of errors, nor pinpoint a specific cause for error to
be addressed in a model redesign. Therefore, it is difficult to judge the results in Table 1 from H2008 solely by the fact that
the skill defined by Eq. (65) is close to 1. In this respect the approach used by H2008 is rather different from the common
model assessment practices within the ROMS community (cf., [3,13,14], and the remainder of Section 4 in H2008 itself) as
well as from the related effort in data assimilation [15,16]. The latter tends to use cost functions with subjectively spec-
ified weights; i.e., some errors are given more tolerance than others. This differentiation is necessary to address uncertain-
ties associated with differing quality of observational data and with the fundamental predictability limit to how well
model and data can match each other in a deterministic sense when the flows are dynamically unstable and turbu-
lent.Although not always expressed as quantitative measures, there is a common oceanic model assessment procedure.
At first, one evaluates the model ability to reproduce known results in controlled (often idealized) simulations. Secondly,
for a realistic configuration the key issue is that most measurements are sparsely distributed and cannot be meaningfully
compared with model results directly. Thus, one bests gauges model results against observations of the mean state (e.g.,
[17]), variance, or other statistical measure, which requires averaging of the model results in various ways (climatological
mean, high- and low-path filtering, extracting signals with selected frequencies, etc.) before comparisons can be made.
Examples of meaningful measures are the path of the Gulf Stream, the seasonal cycle of the depth of particular isotherms,
and eddy kinetic energy. Most often these comparisons are not easily quantified into a single number for ‘‘skill”. In dealing
with turbulent flows, there is little hope to achieve a close phase correspondence between the model and the
measurement (periodically-forced barotropic tides are a counter-example). From the point of view of Eq. (65), a phase dif-
ferences is counted as error, as is the ability of the model to produce fine-scale features (e.g., fronts and eddies) not present
in observational climatologies due to under-sampling. This may lead to a paradoxical result that Eq. (65) may yield a
higher skill for a coarse-resolution model than for a fine one, because it interprets fine-scale phenomena as noise. On
the other hand, the time-and-space averaged effect of the latter may lead to a significant difference in the mean
circulation, which is observable in sparse data but cannot be accurately simulated with a coarse model. This leads to a
greater skill of a fine-resolution model, if its output is averaged appropriately to match the smoothness of the available
data.
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� H2008 makes a rather skewed citation of published literature with several major omissions. For example, a significant
milestone in realistic simulations of US West Coast and California Current System using ROMS, Marchesiello et al. [13],
is not cited. Neither is Centurioni et al. [18], which compares drifter data from the same area against the results from four
different ocean models including ROMS. Nor are Penven et al. [19], which is a demonstration of code working on a set of
progressively refined grids; and Capet et al. [20], which is the first in series of high-resolution ðDx < 1 kmÞ studies ded-
icated to transition toward submesoscale dynamics – all of which were available before publication of H2008. Also not
cited is a line of late 199x development with significant influences on ROMS codes [21–24], which undertake a major rede-
sign of SPEM code with subsequent use for realistic simulations (Section 5).
1.2. Minor comments and typos

� p. 3595, Abstract, the one before the last line appearing on this page ‘‘. . .quasi-monotone advection produces both more
robust and accurate . . .”: this is misleading because ‘‘quasi-monotone” advection schemes [25] use a special numerical
mechanism to suppress dispersive overshoots of high-order, centered advection. No such thing is actually used in ROMS.
What needs to be said instead is that, unlike virtually all other ocean models, ROMS uses higher-than second order advec-
tion for both tracers and momentum.

� p. 3603, The subtitle 3.5. Improved Mode-Splitting is misplaced, because Eq. (29) above it already belongs to the improved
splitting algorithm.

� p. 3604, Eq. (36): The l.h.s. term should be
@

@t
ðDuÞ þ � � �, i.e., with lowercase u instead of U. This typo is traced back to the

typo in the original Eq. (3.15) in SM2005.
� p. 3605, Eq. (37): The second r.h.s. term should be

qkþ1=2 � qk�1=2

Hk
z0, i.e., with minus sign instead of a plus sign. This typo is

traced back to the original Eq. (3.16) in SM2005.
� p. 3607, Stage 1: The symbol hUin at the end is undefined.
� p. 3607, Stage 3: The symbol hUinþ1 is undefined.
� p. 3607, Stage 4: The symbol hfinþ1 at the end is undefined; also Hnþ1

i;j;k should not be bold-face.
� p. 3608, Stage 5 and Stage 6: The symbols hhUiinþ1=2 and hUinþ1 are undefined. Moreover these two symbols appear in wrong

places, and should be switched: hUinþ1 should appear in Stage 5, which finalizes the computation of horizontal velocity
components at time step nþ 1. Conversely, hhUiinþ1=2 should appear in Stage 6 where it is used to construct a set of
finite-volume fluxes at nþ 1=2 in such a way that the discretized slow-time continuity equation (cf., Eq. (4.8) in Section
4) holds exactly. This misplacement of the two symbols occurs only in H2008, while the original version in SM2005 is
correct.

� p. 3609, just before Eq. (61), ‘‘The spline is represented by Eq. (43) . . .”: This should instead be Eq. (37); Eq. (43) has nothing
to do with the spline.

� p. 3609, Eq. (61): This is notationally inconsistent with Eq. (37) for two reasons. First, the symbol z, which in this context
has the meaning of a local vertical coordinate defined within a single vertical grid box, should be replaced with
z0; ð�Dz=2 6 z0 6 þDz=2Þ to avoid confusion with the vertical z-coordinate as it is used elsewhere ð�h 6 z 6 fÞ. Second,
f in the l.h.s. should be replaced with z0 as well, and, possibly, Dzk ! Hk to be more consistent with Eq. (37).

� Fig. 8 on p. 3614, and the associated discussion on p. 3613: it should be explained that the date of July 2003 for the SeaW-
iFS chlorophyll data was chosen because of data availability, and it is used here just as a representative image. Otherwise
comparing two fields which are 9 years apart in time does not seem to be very meaningful.

� p. 3623, Ref. [38] in H2008: author name Willmott is misspelled; should be with double ‘‘ll”.
� p. 3623, Ref. [42] in H2008: one name is missing from the list of authors, A. Kaplan should be added at the end after T.M.

Powell.
2. Vertical coordinate of ROMS

2.1. Design considerations for terrain-following coordinates

For an extended period of time the ROMS de facto default vertical coordinate was functionally similar to Eq. (2.16) in SH94
(except for how it is perturbed by the changing f, which was different from the start),
3 Prin
zð0Þðx; y; sÞ ¼ hc � sþ ðh� hcÞ � CðsÞ; �1 6 s 6 0; ð2:1Þ
however, the code is written in such a way that one transformation can be easily replaced with another with all necessary
changes occurring strictly within the routines that set the vertical coordinate. In practice this is implemented by storing the
perturbed coordinate z ¼ zðx; y; sÞ in an three-dimensional array, while the algorithm creating it is hidden from rest of the
code and at no point does the code rely on the specific properties of the transformation (e.g., unlike POM,3 where virtually
all components of the code are written with the assumption that the transformation is separable, zð0Þðx; y;rÞ ¼ CðrÞ � hðx; yÞ).
ceton Ocean Model [26].
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ROMS-related literature often uses the symbol s instead of r for independent sigma-coordinate variable, so the symbols s and r
are interchangeable in most situations. The subtle difference between the two is that r is normally reserved for the proportional
(non-stretched) sigma-coordinate, r ¼ ðz� fÞ=ðhþ fÞ, which uniquely defines the remapping due to both the bottom topogra-
phy and the perturbation in free surface, while s appears in the context of a more general terrain-following coordinate. In ROMS
the z$ s remapping is done first assuming the unperturbed state of free surface, then the resultant vertical coordinate system is
perturbed in a proportional manner to accommodate non-resting free surface (this section below). h ¼ hðx; yÞ is bottom depth
for a resting sea surface. CðsÞ is a monotone nonlinear function constrained by �1 6 CðsÞ 6 0 along with Cð�1Þ ¼ �1 and
Cð0Þ ¼ 0. C introduces a stretching of the vertical grid, typically dCðsÞ=ds� 1; s! 0 resulting in refinement near the surface,
while, conversely dCðsÞ=ds� 1 in the abyss resulting in coarsening. In practice it is common to have a minimum vertical grid
spacing of Dz � 5 m near the surface while Dz may be as large as � 500 m in the deep abyss. hc ¼ const (also positive) is nor-
mally chosen to be comparable with the expected depth of the pycnocline. It introduces a set of nearly horizontal levels in the
upper ocean, �hc < z < 0, in deep regions where hc � h. Besides local refinement near the surface, hc > 0 produces set of ver-
tical levels with nearly uniform vertical spacing by deferring vertical stretching until z < �hc . This is needed for optimal reso-
lution of the surface boundary layer, and it yields a less-than-proportional dependency of the upper level depths on the
topography that overall mitigates sigma-errors in pressure-gradient and advection terms. At z � �hc the transform smoothly
blends with the levels below that behave more and more like sigma levels following topography.

A major limitation of (2.1) is that it becomes a non-monotonic function of s if h < hc because a typical choice of stretching
function CðsÞ has refinement near the surface, dCðsÞ=ds� 1 at the expense of the existence of a range of s where dCðsÞ=ds > 1.
So once ðh� hcÞ becomes negative, @zð0Þ=@s may become negative as well. This imposes the limitation of hc 6 hmin, which
essentially negates the usefulness of having hc in (2.1) by forcing an uncomfortable compromise between choosing hc too
shallow, or modifying/masking out model bottom topography in shallowest places. For several years already, the default
choice in the UCLA ROMS is
zð0Þðx; y; sÞ ¼ h � hc � sþ h � CðsÞ
hþ hc

; ð2:2Þ
instead of (2.1), thus removing the need for choosing hc 6 hmin. Recently this was adopted into the Rutgers version (see Sec-
tion 5 for explanation different branches of ROMS) as the preferred option there as well. The choice of stretching function
CðsÞ is application-dependent. For large-scale, open-ocean simulations a common selection is
CðsÞ ¼ ½1� coshðhsÞ�=½coshðhÞ � 1� ð2:3Þ
with parameter value h ¼ 5:5 . . . 6:5 and hc ¼ 120 . . . 300 m. In coastal configurations, where there is a need to resolve bottom
boundary layer, a two-stage stretching
CðsÞ 	 C½SðsÞ�; where SðsÞ ¼ 1� coshðhssÞ
coshðhsÞ � 1

and CðSÞ ¼ expðhbSÞ � 1
1� expð�hbÞ

; ð2:4Þ
is more preferred. Parameters hs and hb control surface and bottom refinement. Note that the functional limit of CðSÞ when
hb ! 0 is CðSÞ ¼ S, meaning that (2.3) is just a special case of (2.4). For all settings of parameters CðsÞ has the property
dCðsÞ=dsjs!0 ! 0, which, in combination with (2.2), makes @zð0Þ=@sjs!0 � h � hc=ðhþ hcÞ � hc in the deep areas, hc � h. As a con-
sequence, the vertical size of the uppermost grid-boxes generated by (2.2), (2.3) is nearly independent from the bottom topog-
raphy (the uppermost grid thickness can be estimated as hc=N, where N is the number of vertical levels). This makes the
coordinate behave effectively like a z-coordinate near the surface, which is optimal for surface boundary layer simulation,
and, with the natural increase of stratification in the upper part, this design helps mitigate sigma-coordinate pressure gradient
errors. In shallow places (e.g., over continental shelves and coastal areas), (2.2) changes its behavior toward more a sigma-like
coordinate, and it asymptotes toward a uniform-resolution sigma-grid when h� hc regardless of the choice of CðsÞ.

2.2. Perturbation of vertical coordinate by free surface

With the exception of the use of horizontal Cartesian coordinates instead of curvilinear ones, Eqs. (1)–(5) in Section 2.1 in
H2008 are equivalent to those in Section 2.1 in DAMEE2000, which were derived from Eqs. (2.21)–(2.26) in SH94. Although it
may seem to be very subtle and possibly insignificant, the modification of how the continuity equation is written—specifi-
cally Eq. (2.26) in SH94 vs. Eq. (6) in DAMEE2000 that also appears as Eq. (4) in H2008—exposes a major misunderstanding
about how the vertical coordinate of ROMS is perturbed by a moving free surface. H2008 gives an impression that the coor-
dinate is still the same as in SH94, but it is not. Consequently, Eq. (4) in H2008 contradicts Eqs. (11) and (12) in H2008.

2.3. Perturbed vertical coordinate in SH94

The vertical coordinate transformation in SH94 is its Eq. (2.16),
z ¼ fð1þ sÞ þ hcsþ ðh� hcÞCðsÞ; �1 6 s 6 0; ð2:5Þ
where s ¼ 0 corresponds to the free surface z ¼ f, and s ¼ �1 the bottom, z ¼ �h. The other symbols, hc and CðsÞ are the same
as in (2.1). The vertical derivative of (2.5),
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Hz 	
@z
@s
¼ ðfþ hcÞ þ ðh� hcÞ �

d
ds

CðsÞ; ð2:6Þ
[cf., Eq. (2.18) in SH94] appears as a metric function in all terms in Eqs. (1)–(5) in H2008. In the discrete code Hz sets the
height of control volumes. Usually dCðsÞ=ds� 1 for s! 0, implying a vertical grid refinement near the surface. Obviously,
as a consequence of (2.6),
@Hz

@t
¼ @f
@t
: ð2:7Þ
This indicates that Eq. (6) in DAMEE2000 is equivalent to Eq. (2.26) in SH94 only as long as f participates in the vertical coor-
dinate transformation as in (2.5). In the discrete code (2.7) means that all vertical grid boxes Hi;j;k receive exactly the same
perturbation with f, regardless of their size,
Hi;j;k ¼ Hð0Þi;j;k þ f=N; ð2:8Þ
where Hð0Þi;j;k is unperturbed (corresponding to a fi;j ¼ 0 grid-box height) and N is the number of vertical sigma-levels.

2.4. Perturbed vertical coordinate in ROMS

ROMS is not tied to a specific functional form for the vertical coordinate transformation; rather it assumes that there is an
unperturbed (i.e., corresponding to f 	 0) mapping zð0Þ $ s,
zð0Þ ¼ zð0Þðx; y; sÞ; ð2:9Þ
such that zð0Þ ¼ 0, if s ¼ 0 and zð0Þ ¼ �h; s ¼ �1. It is presumed to be differentiable in all directions but otherwise general.
Once the mapping (2.9) is chosen, the perturbation due to f – 0 is introduced as
z ¼ zð0Þ þ fð1þ zð0Þ=hÞ; ð2:10Þ
[cf., Eq. (1.9) in SM2005], so the counterpart of (2.6) becomes
Hz ¼
@zð0Þ

@s
� 1þ f

h

� �
¼ Hð0Þz � 1þ f

h

� �
; ð2:11Þ
[cf., Eq. (1.10) in SM2005]. Then (2.7) becomes
@Hz

@t
¼ Hð0Þz

h
� @f
@t
; ð2:12Þ
after which it is no longer possible to replace Eq. (2.26) in SH94 with Eq. (6) in DAMEE2000, which essentially invalidates the
latter and Eq. (4) in H2008 as well.4 Finally, the counterpart of (2.8) becomes
Hi;j;k ¼ Hð0Þi;j;k þ Hð0Þi;j;k �
f
h
: ð2:13Þ
This means that each grid-box receives a perturbation proportional to its unperturbed height.5 This property was discussed at
the end of Section 1.2 in SM2005, including how it differs from SH94.

3. ROMS equations of motion

The set of ROMS equations is comprised of horizontal momentum equations written in horizontal orthogonal curvilinear
coordinates ðn;gÞ (hence the length of an infinitesimal arc dl associated with increments in coordinates is
dl2 ¼ dn=m2 þ dg2=n2 where m�1 and n�1 are Lamé metric coefficients):
Du
Dt
� bF v ¼ �Hz

n
� 1
q0
� @p
@n

����
z

þ Gu;
Dv
Dt
þ bF u ¼ �Hz

m
� 1
q0
� @p
@g

����
z

þ Gv : ð3:1Þ
D=Dt is the material derivative in conservation form in curvilinear coordinates,
s comment also applies to Section 2.1 in DAMEE2000 because the code used to compute its results already had its vertical coordinate perturbation using
stead of (2.5). The correct version of the continuity equation (6) in DAMEE2000 should have its first term as @

@t ð
Hz
mnÞ, and the correct relationship between

ordinate and the transformed-coordinate vertical velocity (unnumbered equation on p. 244, DAMEE2000) should be

X ¼ 1
Hz

w� zþ h
fþ h

� @f
@t
� l @z

@n
� m

@z
@g

� �
he DAMEE2000 notation. This remark does not put into question any of the computational results presented there.

way that the ROMS vertical coordinate is perturbed by f – 0 is rather similar to how it occurs in POM. The separable coordinate transformation in POM
þ D � CðsÞ ¼ fþ ðhþ fÞ � CðsÞ. Hence, in our terms, zð0Þ ¼ h � CðsÞ, and Hz ¼ @z=@s ¼ ðhþ fÞ � dC=ds ¼ Hð0Þz � ðhþ fÞ=h, which is the same as (2.11).
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D

Dt
¼ @

@t
Hz

mn



� �
þ @

@n
Hzu

n



� �
þ @

@g
Hzv
m



� �
þ @

@s
xs

mn



� �
: ð3:2Þ
The horizontal derivatives @=@n ¼ @=@njs and @=@g ¼ @=@gjs are along s-surfaces. bF is a generalized Coriolis parameter,
bF ¼ Hz

mn
f þmn � v @ð1=nÞ

@n
� u

@ð1=mÞ
@g

� �	 

; ð3:3Þ
that combines the Coriolis force due to Earth rotation (with frequency f ¼ 2X sin u) with the fictitious inertial forces due to
curvature of the horizontal coordinates. This approach follows [27] [Eqs. (257)–(263) there] and ensures that all these terms
cancel identically when a kinetic-energy equation is derived from (3.1). The same also applies to their discretized versions.

Continuity and tracer equations are written as
Dq
Dt
¼ Gq; q 2 fconst;H; S; . . .g; ð3:4Þ
where H; S; . . . are potential temperature, salinity, and other tracers associated with possible submodels for sediment and
biogeochemical concentrations. Gq in (3.1) and (3.4) denotes dissipation and forcing terms: viscosity and diffusion, wind
stress and thermal forcing, heating by light absorption, biological conversions, vertical migration of biota, cohesive processes
in suspended sediments, etc. The pressure and horizontal PGF are computed from hydrostatic balance,
p ¼ g
Z 0

s
qHz ds0 ¼ g

Z f

z
qdz0 hence � @p

@n

����
z

¼ �gqjs¼0 �
@f
@n
� g

Z f

z

@q
@n

����
z¼const

dz0; ð3:5Þ
which is then transformed back into the s-coordinate,
�@p
@n

����
z

¼ �gqjs¼0 �
@f
@n
� g

Z 0

s

@z
@s
� @q
@n

����
s

� @q
@s
� @z
@n

����
s

� �
ds0: ð3:6Þ
The expression ½. . .� inside the rightmost integral (essentially a density Jacobian J n;sðq; zÞ) serves as a prototype for the meth-
od for accurate approximation of the baroclinic PGF term [6] that mitigates the infamous sigma-coordinate PGF error.6

The system (3.1), (3.4), and (3.6) is closed by the Equation of State (EOS) q ¼ q EOSðH; S; PÞ, which is adopted from [28] to
allow the use of potential rather than in situ temperature; and furthermore, following the approach of [29] it is ‘‘stiffened” by
noting that qEOSðH; S; PÞ ¼ rðPÞ � q�EOSðH; S; PÞ, where rðPÞ (a function of pressure only) absorbs most of the variation of density
in the ocean. Stiffening by the replacements q! q� and q0 ! q�0 eliminates up to � 90% of the errors associated with the
Boussinesq approximation. To facilitate adiabatic differencing—critical to preventing the appearance of spurious negative
stratification in the polynomial interpolation of density [6]—the EOS is split into two components,
q�EOSðH; S; PÞ ¼ q1ðH; SÞ þ q�1ðH; SÞ � Pð1þ q2PÞ, where q2 ¼ const. Both q1 and q�1 are available for the PGF algorithm and for
evaluating the vertical stratification used in parameterized vertical mixing processes. For simplicity and consistency with
the Boussinesq approximation, the EOS pressure is replaced with P ¼ q0gðf� zÞ.

Besides the use of curvilinear horizontal coordinates and a few extra details, the set of equations in this section is similar
to Eqs. (1)–(5) in H2008 but with two exceptions: the definition of vertical velocity in transformed vertical coordinates
(essentially the replacement X$ xs, where X is as in SH94 and DAMEE2000) and the formulation of the continuity equation
(due to how the vertical coordinate is perturbed by f). (A non-hydrostatic version of this system is formulated in [30].) The
next section discusses the consequences of these differences, focusing on the role of the continuity equation and its use in
the code.

4. Continuity, conservation, constancy-preservation, and time-splitting

It is convenient to rewrite (3.2) as
D

Dt
¼ @

@t
Hz

mn



� �
þ @ðU
Þ

@n
þ @ðV
Þ

@g
þ @ðW
Þ

@s
; ð4:1Þ
where we introduce the volumetric fluxes, U ¼ Hzu=n; V ¼ Hzv=m, and W ¼ xs=ðmnÞ. The continuity equation (cf., (3.4) with
q ¼ const) then is
@

@t
Hz

mn

� �
þ @U
@n
þ @V
@g
þ @W

@s
¼ 0: ð4:2Þ
This W directly corresponds to W in the discretized Eq. (1.19) in SM2005 [the same as Eq. (21) in H2008], and it is the only
one that appears in a hydrostatic code. Note that the horizontal components appear both as the momentum components u;v
e that although the first term in the r.h.s. of (3.6) is predominantly of barotropic nature, while the second one is mainly baroclinic, Eq. (3.6) should not
ed as the basis for barotropic–baroclinic mode-splitting since the second term has some dependency on f. The actual split used in ROMS is discussed in
.
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and volume fluxes U;V , while W does not have its lower-case counterpart.7 The lower- and upper-case velocities can be traced
back as co- and contra-variant vector components that are distinguishable due to the non-orthogonality of the coordinate
system.

Eq. (4.2) plays a dual role: (i) its vertical integral serves as a prognostic equation for f, and (ii) it allows the computation of
vertical velocity W,
7 Thi
@f
@t
þmn � @U

@n
þ @V
@g

 !
¼ 0 and W ¼

Z s

�1

@U
@n
þ @V
@g

� �
ds0 � 1

mn
� zþ h
fþ h

� @f
@t
: ð4:3Þ
U and V are barotropic, volume-weighted fluxes. To derive (4.3) we use
@z
@t
¼ @f
@t
� z
ð0Þ þ h

h
¼ @f
@t
� zþ h
fþ h

; ð4:4Þ
a consequence of (2.10). This illustrates the meaning of W as the volumetric flux across the elemental area of the s-surface
that moves up and down following the free surface according to (2.10). The ratio ðzþ hÞ=ðfþ hÞ does not actually depend on
f, so any available time-state of the vertical coordinate z ¼ zðn;g; sÞ is suitable for its computation.

In the case of purely barotropic motion u ¼ u; v ¼ v and a separable coordinate transformation ðzð0Þ ¼ CðsÞ � hðn;gÞÞ, the
vertical velocity W vanishes. Since z ¼ zð0Þ þ fð1þ zð0Þ=hÞ ¼ fþ D � CðsÞ (with D ¼ hþ f), hence Hz ¼ D � C0ðsÞ (with
C0ðsÞ ¼ dCðsÞ=ds), the right Eq. (4.3) becomes
W ¼
Z s

�1

@

@n
C0ðsÞ � Du

n

� �
þ @

@g
C 0ðsÞ � Dv

m

� �� �
ds0 � 1

mn
� ðCðsÞ þ 1Þ � @f

@t

¼ ðCðsÞ þ 1Þ � @U
@n
þ @V
@g

" #
� 1

mn
� ðCðsÞ þ 1Þ � @f

@t
	 0; ð4:5Þ
because of the left-side Eq. (4.3) for f. This property reflects the fact that according to (2.10) the perturbation of zð0Þ is pro-
portional to the distance from the bottom. So too is the vertical velocity (in the z-coordinate sense) of a barotropic flow,
resulting in zero vertical velocity relative to the moving sigma-levels. Ultimately, we prefer (2.10) to (2.5) or any other alter-
native (e.g., allowing only the uppermost grid box to change [8]).

In the case of the general, non-separable transformation (2.9), the vertical velocity W in a barotropic flow no longer van-
ishes as it does in (4.5). From this point of view, the statement made at the end of Section 3.2 in H2008 (top of p. 3601) [and a
similar statement in Section 1.2 in SM2005] that ‘‘vertical mass fluxes generated by a purely barotropic motion vanish iden-
tically at every interface zkþ1=2” is not generally correct. However, the tendency of sigma-levels to move in sync with the ver-
tical velocity (in the z-sense) of the barotropic flow remains valid in general, still making (2.10) the best possible choice. The
property of canceling the vertical motion of the barotropic flow is useful for mode-splitting the PGF because sudden changes
in f do not result in a large vertical velocity relative to the grid (hence no associated CFL violation) and do not cause spurious
vertical redistribution of density. This justifies ‘‘freezing” �q and q
 [Section 3.5 in H2008; Section 3.1 in SM2005] during the
barotropic time-stepping.

The actual procedure as it appears in the code consists of two stages,
fW ¼
Z s

�1

@U
@n
þ @V
@g

� �
ds0 followed by W ¼ fW � fW js¼0 �

zþ h
fþ h

: ð4:6Þ
This guarantees that surface and bottom no-flux boundary conditions, W js¼0 ¼W js¼�1 ¼ 0, are satisfied. Its appearance
somewhat hides the time-dependent nature of (4.3) because it does not contain the time derivative of f, but we can verify
that they are equivalent. This equivalence is destroyed when continuous time is replaced with discrete time-stepping and
time-splitting and when different time-stepping algorithms are used to advance different parts of the model equations. This
is because the left-side (4.3) and the vertically-integrated momentum equation (3.1) comprise a system of equations for the
barotropic mode that are advanced using a much smaller time step than used for the baroclinic fields and then fast-time-
averaged for their slow baroclinic interactions. In contrast, the r.h.s. of (4.3) belongs to the slow baroclinic sub-system,
and its @f=@t (and, implicitly, in (4.6)) is approximated using the slow-time hfi and slow time-step Dt.

The procedure (4.6) is used during both predictor and corrector stages of the ROMS time step; however, it has two dif-
ferent meanings in these two stages. During the corrector stage (after the barotropic-mode stepping is complete and all five
fast-time-averaged barotropic fields hfinþ1

; hUinþ1
; hVinþ1

; hhUiinþ1=2
; hhViinþ1=2

� �
are available and constructed such that
hfinþ1 � hfin

Dt
þmn � @

@n
hhUiinþ1=2 þ @

@g
hhViinþ1=2

� �
¼ 0; ð4:7Þ
[cf., Eq. (3.39) in Section 3.2 in SM2005]), the 3D fluxes Unþ1=2 and Vnþ1=2 are corrected to yield the same vertical integral as
hhUiinþ1=2 and hhViinþ1=2. Then Wnþ1=2 is computed via (4.6). The resulting set of fluxes ðUnþ1=2; Vnþ1=2; Wnþ1=2Þ satisfies the fi-
nite-time-step version of (4.2),
s does appear in the non-hydrostatic model [30] and there only as w, the ‘‘true” vertical velocity rather than xs .
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Hnþ1
z � Hn

z

mn � Dt
þ @Unþ1=2

@n
þ @Vnþ1=2

@g
þ @Wnþ1=2

@s
¼ 0; ð4:8Þ
[cf., Eq. (19) in H2008, the same as Eq. (1.17) in SM2005]. This provides the basis for updating the tracer fields so they satisfy
both conservation and constancy-preservation properties.

During the predictor stage (before the barotropic-mode time-stepping), the new-time-step f field is not available; hence,
it is impossible to construct a W that satisfies an equation similar to (4.8). So W is computed via (4.6). The resulting set
ðUn; Vn; WnÞ is used to compute two auxiliary sets of grid-box thicknesses,
Hn�1=2
z ¼ Hn

z �
Dt
2
�mn � @Un

@n
þ @Vn

@g
þ @Wn

@s

� �
¼ Hn

z �
Dt
2
� divUn: ð4:9Þ
This is known as the artificial continuity equation. It is formally consistent with (4.2) with second-order temporal accuracy.
However, inherent in (4.9) is the fact that its vertical integral corresponds to applying a time step �Dt=2 to the f equation
that is normally advanced using a much smaller barotropic time step. Nevertheless, the resulting Hn�1=2

z is appropriate be-
cause vertical integrals of Un and Vn yield hUin and hVin, respectively—a property inherited from the previous time step—
and therefore do not contain fast-oscillating components dangerous for numerical stability.8

Once Hn�1=2
z and Hnþ1=2

z are available, the tracer fields are updated as9
qnþ1=2 ¼ 1
Hnþ1=2

z

Hn�1=2
z � q

n þ qn�1

2
� Dt � divðUnqnÞ

� �
; ð4:10Þ
and Hn�1=2
z is discarded. Eqs. (4.9) and (4.10) are constancy-preserving for tracer q. However, the integrated concentration is

not conserved because there is no guarantee that Hn�1=2
z , computed during the next time step, is the same as Hnþ1=2

z from the
previous one. Hence, this is a method to regain constancy-preservation at the expense of conservation. This is acceptable
because the resulting fields qnþ1=2 are used exclusively to compute advective fluxes during the subsequent corrector stage.
In SM2005 this method is called pseudo-compressible.10
5. Multiple hydrodynamic kernels in the ROMS family

H2008 emphasizes early model developments leading toward ROMS as moving along the line of
[32] ? SH94 ? [33] ? DAMEE2000 (p. 3596 and Refs. [1,3,4,6] in H2008; also Section 2 in DAMEE2000). We partly disagree
with this as an oversimplification, both because of omission of notable references and also because of missing critical code
components inherent to ROMS. The purposes of this section are to clarify the ROMS lineage and to reflect the present status
of ROMS-family codes.

5.1. Early developments

The earliest publication related to ROMS development is [semi-]Spectral Primitive-Equation Model (SPEM) [32] (hereafter
HWY91). It introduces a sigma-coordinate model using Chebyshev polynomials in the vertical direction and a staggered
(Arakawa C), orthogonal curvilinear grid in horizontal directions with second-order finite-differences. The barotropic mode
is treated using a rigid-lid, streamfunction approach (via the prognostic barotropic vorticity equation). For computational
efficiency SPEM does not perform spectral transforms—no efficient FFT-like procedure is available with Chebyshev—at every
time step, but instead all discretized fields are defined at equivalent vertical co-location points rk at the locations of extrema
of the highest-order polynomial used. The points have a natural tendency of refinement toward the ends, surface and bot-
tom. However, for most oceanic situations surface-intensified shears flows are expected, which makes an asymmetric refine-
ment (more toward the surface) more suitable, and it is rare to use high resolution in the parameterized turbulent boundary
layers. SPEM provides some further flexibility by introducing an additional remapping sk ¼ sðrkÞ, where sðrÞ is a user-de-
fined, continuously-differentiable function. The common operations of vertical differentiation and integration are imple-
mented as matrix multiplies applied to the entire vertical column. The associated N 
 N matrices are not sparse, resulting
in N2 operations (N is the number of vertical polynomials), which effectively limits the model to modest vertical resolution.
However, this was expected to be offset by the spectral accuracy in the vertical direction. For efficiency the matrices are pre-
computed at initialization and stored thereafter; so for this to be practical, they must be independent of local topography,
which mandates the vertical sigma-transformation be strictly separable, z ¼ sðrÞ�1

2 � hðx; yÞ, hence zi;j;k ¼ sk�1
2 � hi;j. Immediately
appropriateness relies on the design of the filter for the fast-time-averaging of the barotropic mode.
simplicity we present the Leap-Frog-Trapezoidal Rule (LF-TR) version of the predictor-corrector algorithm. The actual code utilizes the LF-AM3 (Adams-
n 3rd order, a.k.a. closed parabolic integration rule) method that has a different set of coefficients for the qn; qn�1, and r.h.s. terms. Refer to Eqs. (4.7) and
SM2005 for more detail.

hilosophically similar, but not equivalent, method was proposed by Easter [31] to recover the constancy-preservation property for a split-directional
on scheme written in conservation form. In the case of a non-divergent deformational flow, the directional splitting causes the component flows in
tive directional updates to be divergent, resulting in a loss of constancy. An artificial continuity equation, essentially compression followed by
ent expansion (or vice versa), was proposed to compensate for the loss.
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after its introduction, SPEM was used in several studies for both idealized and realistic applications, notably US West Coast
simulation [34] with a modest horizontal resolution of � 7 km; 128
 80 horizontal grid with eight vertical polynomials, and
a semi-idealized coastal configuration (f-plane, periodic north–south with large-scale flow data supplied via relaxation). The
model showed topographically-modulated instabilities of the coastal upwelling front and a poleward deep undercurrent—
prominent features studied in a more realistic configuration a decade later [13]. Other studies used spectral SPEM dealt with
topographically trapped waves and rectified flow around a seamount [35,36].

Subsequently it was realized that a vertical Chebyshev-polynomial representation imposes a set of limitations that are too
restrictive in practice. Spectral convergence requires smoothness of the fields on the grid scale, which is not often the case.
The use of a separable r-coordinate in combination with different discretizations of different directions (spectral in vertical
and finite-difference in horizontal) leaves no other choice but to rely on the accuracy of approximation of each term indi-
vidually in order to achieve hydrostatic error cancellation of pressure gradient terms (a central problem in sigma modeling).
An effort was made to address this issue by increasing the order of accuracy of horizontal finite-differencing [37], but it never
went beyond idealized test problems. The semi-spectral framework makes it impossible, or at least very hard, to construct
iso-geopotential or isopycnal lateral diffusion operators for tracers to avoid spurious diapycnal mixing where sigma surfaces
cross density surfaces. Another limitation of the original SPEM is the lack of an implicit treatment of vertical viscosity and
diffusivity terms, which results in a severe restriction on time step size [21]. This can be implemented efficiently as a matrix
multiply only if the viscosity and diffusivity are known a priori and are constant in time, but in a more general case it requires
an inversion of a full N 
 N matrix, albeit with a useful significant computational savings due to the increase in time step size
[38]. (Note that near the surface and bottom, Dr ¼ rk¼1 � rk¼2 � 1=N2, resulting in a CFL limitation for explicit vertical vis-
cosity DtAv=Dz2 � DtAv � N4=h2.)

A major redesign of SPEM was introduced by Barnier et al. [21], who replaced vertical Chebyshev polynomials with finite-
differences, and at the same time, introduced several important algorithms, viz., implicit vertical viscosity and diffusion, and
lateral diffusion for tracers along geopotentials (rather than along sigma surfaces). At this stage also developed were algo-
rithms for handling open-boundary conditions, allowing regional simulation with non-trivial inflow and outflow through the
side boundaries. The resultant code was used for Southern Atlantic simulation [21,22]. This was further refined by de Mir-
anda et al. [23] using a stretched vertical coordinate similar to SH94 (except f 	 0 due to rigid lid, cf., (2.1) in Section 2 here)
and staggering of vertical velocity relative to tracer points. A similar, but independent development yielding an all-finite-dif-
ference version SPEM was undertaken by Umlauf et al. [39], who also made a thorough comparison of its performance with
the spectral version. These developments were consolidated into SPEM 5.1 code, which was used in series of studies, notably
Beckmann et al. [40] and Penduff et al. [41]. Ultimately it participated in the DYNAMO Atlantic modeling intercomparison
[24,42]. Despite all these transformations, the original acronym ‘‘SPEM” was kept unchanged, and there are publications well
after 2000 that still refer it as ‘‘semi-spectral”, even though Chebyshev polynomials were out of use already for several years.

SH94 is another notable reference in the ROMS-related literature, and sometimes even used as the introductory reference
to ROMS (e.g., pp. 241 and 242 in DAMEE2000). The book Haidvogel and Beckmann [33] positions SH94 as a free-surface
variant of SPEM (then existing as a purely finite-difference code, hence an alternative meaning for acronym SPEM is pro-
posed on p. 133, replacing ‘‘semi-spectral” with ‘‘S-coordinate”), so the two, SPEM and SCRUM are described together.
SH94 is credited for essentially two reasons: (i) its Eq. (2.16) introduces the S-coordinate to overcome the shortcomings
of the standard separable r-coordinate of POM and SPEM (Section 2.1)—which has been the most common reason for its
citations—and (ii) its development of a free-surface model called SCRUM. However, in contrast with the SPEM developments
mentioned above, the SCRUM code described in SH94 was never used for any simulations besides those presented in SH94
itself and the pressure-gradient error tests in [43]. Unlike the rigid-lid algorithm of SPEM which is well documented, [33]
provides no detail about the free-surface, split-explicit algorithm of SCRUM other than briefly mentioning it on p. 136 (refer-
ring to Section 2.12 which is a general introduction to fractional-step methods) and in a footnote on p. 91 (citing [44] and
explaining the necessity of temporal filtering of the barotropic mode in order to avoid numerical instability). In our own
examination of a code presented to us in 2005 by the first author of SH94 (called SCRUM 2.1 and recorded as part of a US
Copyrights registration dated April, 1996), there is no mechanism for baroclinic–barotropic mode-coupling that is mathe-
matically consistent with the set of equations it is declared to solve. Specifically, the code does not contain a procedure
for vertical integration of r.h.s. terms for the momentum equation to supply coupling terms for the barotropic mode in
the way it occurs in a later SCRUM3.0 code of Hernan Arango (Fig. 1) nor as is stated in the last paragraph of Sec. 3.1 of
SH94 starting with ‘‘In Eqs. (3.5) and (3.6), uu; uv , and vv are evaluated from the internal mode . . .”. Nor does the code con-
tain a fast-time-averaging procedure for the barotropic fields, instead using instantaneous barotropic velocities to correct the
vertical integrals of horizontal velocities for the 3D mode at the end of each main time step. No such procedure is ever men-
tioned in SH94. There is a striking difference between the topographically-constrained flow in Fig. 9 of SH94 and the earlier
results using SPEM [34] for a similar problem. While SPEM develops strong current instabilities and filaments, no such fea-
tures are present in SH94. From our own early experience with US West Coast simulations we know that posing a purely
barotropic problem results in topographic contour-following flow, while producing correct instabilities of an upwelling front
requires correct coupling between barotropic and baroclinic modes. Another indication of lacking proper coupling between
the barotropic and baroclinic modes is an almost purely baroclinic flow generated by pressure-gradient error in the Sea-
mount test problem (see butterfly-shaped pattern in the upper-right panel of Fig. 1 in [45]). This strongly contrasts to the
emergence of a significant barotropic component of the flow in the same problem reported by Mellor et al. [46] (note the
appearance of Sigma Error of the Second Kind) and also by [6,47–49].



Fig. 1. Schematic diagram of SCRUM 3.0 code of Hernan Arango: r.h.s. terms for the barotropic momentum equations (small descending arrows on the left)
are subtracted from the vertically-integrated r.h.s. for 3D momentum (ascending arrows) to yield forcing terms (diagonal arrows originating from 
 
) for
the barotropic mode. The barotropic mode is averaged over a 2Dt interval, so the outcome is time-centered at nþ 1.
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5.2. Present-day codes

SM2005 loosely discusses different possibilities for building a code, but provides a detailed summary for only the most
recent one at the time the article was written. Nevertheless, the other possibilities have since materialized but as yet re-
ceived little attention in the published literature, besides merely citing SM2005 in a summary manner. Currently there
are four distinct variants of the hydrodynamic time-stepping kernel for ROMS-family codes that are widely used.

1. Rutgers University ROMS (a.k.a. ‘‘official ROMS”) (Fig. 2, upper left): This uses an AB3 time step for the momentum equa-
tion, inherited from an earlier code, SCRUM 3.0 by Hernan Arango in 1997, that is the direct ancestor of all ROMS-family
codes (Fig. 1). In comparison with its predecessor, the code is characterized by
(i) a fast-time-averaging procedure for the barotropic mode using two sets of weights corresponding to h�i- and hh � ii-

averaging—a mechanism responsible for simultaneous conservation and constancy preservation for tracers regard-
less of the magnitude of the change in f from one time step to the next. Algorithmically the procedure allows a
rather general choice of the shape of primary weights h�i as long as it properly normalized and centered at the baro-
clinic time step nþ 1. The secondary weights hh � ii are always uniquely defined by the primary. There is no addi-
tional computational cost associated with the use of non-uniform weighting for h:i other than the necessity to
extend computation of barotropic mode beyond nþ 1. It should also be noted there are publications, [44,50,51],
which view h�i-averaging as unnecessary and undesirable because it introduces numerical damping of time-
resolved barotropic motions, and a effort was made to design a time-split algorithm without averaging (in our
terms it is equivalent to setting h�i to delta-function centered at nþ 1, while hh � ii becomes uniformly weighted
averaging over the interval from n to nþ 1). However later Higdon [52] introduces rectangular-shaped averaging
over half of the baroclinic time step, Dt=2, interval into his algorithm. This was done after realizing that in the pres-
ence of variable bottom topography mode splitting is never exact even for a linearized system, some measures are
needed to ensure robustness of the algorithm. The rationale for selecting shape of h�i is provided in [2,4], and is
primarily motivated by the desire to achieve a more frequency selective fast-time filtering than that produced
by a rectangular window;

(ii) a pseudo-compressible (using an artificial continuity equation), hence non-conservative, predictor step for tracers
(4.9) and (4.10);

(iii) a forward extrapolation of baroclinic-to-barotropic mode forcing terms (using AB3 coefficients in this case)—a fea-
ture that avoids loss of second-order accuracy relative to just accepting their values computed at time step n and
also improves code stability (n.b., no viscosity or the use of upstream-biased advection schemes is required for
numerical stability even in situation where there is a significant barotropic component in the advection terms
of the momentum equations, e.g., in shallow coastal regions, cf., [53], where it is found that the previous mode-
splitting algorithms may experience difficulties. It its turn this allows much less dissipative, hence more accurate,
fast-time-averaging);

(iv) a use of forward–backward feedback between momentum and tracer equations (the final update for tracers is
delayed until the new-time-step velocities u;vnþ1 become available, and they are used in an appropriate combina-
tion with their old-step counterparts to advect tracers; the particular algorithm used here maps onto AB3-TR gen-
eralized forward–backward scheme in Section 2.3 of SM2005); and

(v) taking into account the non-uniformity of density field when computing the PGF for the barotropic mode. This
reduces the mode-splitting error relative to a commonly used simple shallow-water-like �gq0rxf term.

Chronologically this is the first code in the ROMS family (first introduced in early 1998), and all its features (i)–(iv) are
present in all ROMS codes. This is the code used in DAMEE2000 with the exception that the mode-splitting algorithm using
�q;q
 for the barotropic PGF was not available at that time: a simple �gDrf-term was used instead; the feature (v), the use of
�q;q
, was added in 2002. This updated version of ROMS is used for all the computations presented in Section 4 of H2008, and
it is the basis for the adjoint code of ROMS [15].



Fig. 2. Four variants of the ROMS kernel that are currently in use. Upper left: Rutgers University ROMS. Upper right: predictor-corrector main step with mode
coupling during predictor stage. (This code is the basis for AGRIF.) Lower left predictor-corrector with coupling during corrector stage, same as in Section 5 of
SM2005. (Note that the four arcs and barotropic mode on top correspond to SM2005 Stages 1–6). Lower right: generalized forward–backward main step.
(This code is used as a basis for the non-hydrostatic code of Kanarska et al. [30].) Legend: The arcs (curved arrows) correspond to ‘‘steps”; i.e., update of
either momenta or tracers that involve computation of r.h.s. The supporting pillar near the middle of an arc connecting it to the circle indicates the timing
of computating of r.h.s. terms needed to performed the step (also see Fig. 3 for explanation). Straight arrows indicate exchange of data between the modes.
Each arrow originates at the time when the corresponding variable becomes logically available, regardless of its actual temporal placement. Arrows are
drawn in the sequence that matches the sequence of operations in the actual code: whenever arrows overlap, the operation occurring later corresponds to
the arrow on top. The different shape functions for fast-time averaging are interchangeable and not tied to a specific code, but are separately presented
here to illustrate their forms.
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2. LF-AM3 predictor-corrector main step with mode-coupling during the predictor stage (commonly known today as ‘‘AGRIF
ROMS”) (Fig. 2, upper right): This shares the mode-coupling mechanism with the Rutgers code, however it uses a predic-
tor-corrector step for momentum equation as well. This improves the stability limit for internal waves (by approx. 1.6
times relative to AB3) at the expense of a mild increase in computational cost. Since tracer time-stepping was already
using a predictor-corrector step and since the sole purpose of the predictor step is to provide values for the advective,
Coriolis, and PGF terms during the corrector step, a simplified set of operations is used during the predictor step. For
example, the viscous terms and mixing parameterizations are computed only once per time step, reducing their cost.
Another new feature in this code is that r.h.s. terms are no longer stored from one time step to the next (as with AB3
stepping above), but rather combine LF stepping with AM3 interpolation during the predictor phase, so that the following



Fig. 3. Sub-diagram explaining the LF-AM3 step. First, using nth and ðn� 1Þth values, the data is interpolated linearly to n� 1=2þ 2c, which is used as the
initial condition (c ¼ 1=12 for LF-AM3; c ¼ 0 for LF-TR). Then it is advanced to nþ 1=2 using r.h.s. terms computed at nth step (predictor). Subsequently the
nth field is advanced to nþ 1 using the r.h.s. at nþ 1=2 (corrector).
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corrector phase looks ‘‘logically-LF” as well (Fig. 3). The 2c bias in setting the initial condition introduces a pre-distortion
that cancels second-order truncation errors and yields an overall third-order accuracy (cf., Eqs. (2.38)–(2.41) in SM2005
and the associated discussion). This code is used in Shchepetkin and McWilliams [6], and it is the basis for AGRIF,11 Pen-
ven et al. [19], maintained and developed at IRD.12

3. LF-AM3 main step with coupling during corrector stage (commonly known as ‘‘UCLA ROMS”) (Fig. 2, lower left): This is the
same as in Section 5 of SM2005 and is used in ongoing research at UCLA. Its main time-stepping is similar to the previous
one, but the mode-coupling mechanism is redesigned to eliminate the need for AB3 extrapolation of the baroclinic-to-
barotropic forcing terms; since this occurs during the corrector stage, all relevant terms are already at the nþ 1=2 baro-
clinic step. This code involves a complete redesign of the barotropic mode itself; the LF-TR/AM3 stepping is replaced with
a generalized forward–backward scheme, yielding a reduction in the computational cost by more than a factor of two.
Because the computation of r.h.s. terms for the 3D momentum equations during corrector step uses ‘‘mixed-state” u;v
fields (their baroclinic components are already advanced to nþ 1=2, but vertical averaged still correspond to main time
step n), to maintain numerical stability for barotropically-dominated advective terms without resorting to explicit viscos-
ity or upstream-biased advection schemes, this variant of the code requires recomputing of advective and Coriolis terms
during barotropic time stepping (in the two previous variants, Rutgers and AGRIF, this is optional, since AB3-extrapola-
tion of coupling terms ensures stability with respect to advection and Coriolis; however in all practical applications the
recomputing is always done in these codes as well). For computational efficiency a simple second-order centered scheme
is used for barotropic momentum advection terms, while a 3D advection is computed using a higher-order scheme (3rd-
order upstream-biased, or 4th-order centered). Despite this, the overall spatial accuracy for barotropically-dominated
advection terms is higher than second because the barotropic mode receives the higher-order correction terms (the dif-
ference between 3rd- or 4th-order vertically integrated 3D and second-order 2D advection) through the mode-coupling
algorithm (diagonal ascending arrows in Fig. 2, lower left). The elimination of AB3-extrapolation offers the flexibility in
applying different time stepping for different terms which influence barotropic mode, for example for the first time this
variant of ROMS kernel allows fully implicit treatment of bottom drag terms, while avoiding loss of accuracy associated
with mode splitting (this is reminiscent with the long-standing dilemma of accurate treatment of no-slip boundaries in
incompressible flows using projection method, [54]). Also note the appearance of negative lobe in the shape of primary
averaging weights h:i. This choice formally retains the second-order accuracy for fast-time-filtered barotropic mode –
hence achieve a more physically accurate representation of barotropic motions which are resolved by baroclinic time
step.

4. Generalized forward–backward algorithm for the main time step (Fig. 2, lower right): This shares the mode-coupling
mechanism with UCLA code, from which it was developed, but replaces the predictor step with AB3-type extrapolation
of prognostic variables toward nþ 1=2. This variant is used as a basis for the non-hydrostatic code of Kanarska et al. [30].
The motivation to eliminate the predictor stage comes from the fact that it is required to be a non-hydrostatic step as
well, in order to yield extra accuracy, resulting in solving the pressure-Poisson equation for non-hydrostatic pressure
one more time per time step. The entire mode-coupling mechanism is redesigned because the barotropic mode is also
influenced by the non-hydrostatic pressure, and vice versa. The non-hydrostatic version of this code has an additional
prognostic equation for vertical velocity w that is advanced in time simultaneously with ðu;vÞ, and solution of a pres-
sure-Poisson equation to enforce non-divergence at nþ 1 inserted just after the completion of barotropic mode-stepping
but before the update of tracers. Also, compared to the hydrostatic version, the barotropic mode in the non-hydrostatic
code receives an additional forcing term, the vertically integrated non-hydrostatic PGF (see [30] for the complete dia-
gram). The target applications for this code are on very small scales (with horizontal grid resolution in the sub-kilometer
range), so the expected time step is very small and limited primarily by internal gravity waves (rather than Coriolis/iner-
tial oscillations). This regime favors the use of a generalized forward–backward step over a predictor-corrector.

The algorithmic properties of the four ROMS-family codes are further summarized in Table 1.
11 Adaptive Grid Refinement In Fortran.
12 Institute for Research and Development, France.



Table 1
Intercomparison of ROMS-family codes.

SCRUM 3.0 Rutgers ROMS AGRIF UCLA Non-hydrostatic

Origin Rutgers UCLA–Rutgers UCLA–IRD UCLA UCLA
Maintained Obsolete By Rutgers By IRD By UCLA
Introd. yeara 1997 1998 1999b 2002 2006

Time-stepping algorithms and theoretical stability limitsc

Coupl. staged Predictor Correctore

Barotropic mode LF-TR LF-AM3 with forw.-backw. feed.f Generalized FB (AB3–AM4)
amax, barotr.

ffiffiffi
2
p

; ð2Þg 1.85, (2) 1.78, (1)

3D momenta AB3 AB3 LF-AM3 AB3 (mod)
Tracers AB3 LF-TR LF-AM3 AB3 (mod)
Intern. waves AB3 Gen. FB (AB3-TR)h LF-AM3, forw.–backw. feedback Gen. FB (AB3–AM4)
amax, advect. 0.72 0.72 1.587 0.78
amax, Coriolis 0.72 0.72 1.587 0.78
amax, int. w. 0.72, (1) 1.14; (1, 2) 1.85, (2) 1.78, (1)
Storagei 4, 4 4, 3 3, 3 4, 4

Miscellaneous code features and related developments
Parallelization None MPI or OpenMP (user selectable) MPI+OpenMP (incl. hybrid) MPI onlyj

Nesting N/A Off-line On-line Off-line
Data assim. N/A Adjoint, Ref. [15] 3DVar, Refs. [16,55,56]. No No
Introductory referencek Nonel DAMEE2000 [2,19]m SM2005 [30]

a The introduction year is the first year when a functional code first became available. This does not necessarily mean that it had all its features at that
time (e.g., in 1998 Rutgers ROMS did not use a variable density in the barotropic mode, and this feature was added later in 2002).

b Prototype code only. The on-line nesting capability (i.e., it became AGRIF as it is known today) was developed in 2001.
c The theoretical stability limit is defined with respect to a specific physical process taken alone, i.e., without accounting for interference among different

processes nor for the effects of spatial discretization. The latter is assumed to be ‘‘ideal”, i.e., centered (hence non-dissipative), infinite-accuracy (non-
dispersive), and one-dimensional. Under these conditions amax in the table matches the definition in Section 2 SM2005. For the barotropic mode amax is
always limited by surface gravity waves. For the baroclinic mode three different limits are reported.

d Applies only to codes which use predictor-corrector stepping for the 3D momentum equations.
e The UCLA code can function both in predictor-coupled and corrector-coupled modes.
f The generalized FB barotropic mode was ported into the newest AGRIF code at the end of 2007.
g The number in parentheses (e.g.,in

ffiffiffi
2
p

; ð2Þ) indicates the number of r.h.s. computations per time step. If there are two parenthesized numbers, the first
one is for momenta, the second for tracers.

h AB3-TR is a Generalized Forward–Backward (FB) scheme corresponding to Eq. (2.49) from SM2005 with b = 5/12, d = 1/2, and c = � = 0. Note that the LF-
predictor step for tracers of Rutgers ROMS is outside the FB-feedback loop between momentum and tracer equations.

i Storage is the number time slices in 3D arrays needed to implement time stepping. The first figure refers to momentum equations, the second to tracers.
j Limited by the use of HYPRE library to solve pressure Poisson equation. This library does not support OpenMP parallelization at this time.

k Introductory reference is either the first reference where the algorithms of a code are described in detail as the primary purpose of the article, or, if not
available, the first documented use of the code that indicates its existence at the time of publication. The algorithmic references [6] and SM2005 apply to the
entire ROMS family.

l See Section 5.1.
m In 2003 the manuscript later known as SM2005 was submitted into J. Comput. Phys. where it received reference number JCOMP-D-03-00102. It was

rejected soon after citing excessive length, complexity, and lack on new material. It coincides with SM2005 in more than 90% of its content SM2005
(ironically, being word-by-word identical, including typos, in the portions which were copy-pasted into H2008), however, unlike SM2005, it contains a
detailed description of the predictor-coupled time-stepping of AGRIF together with the corrector-coupled algorithm of UCLA ROMS. The description was
excluded from the final, published version of SM2005 because of the desire to reduce article length, and because we consider the corrector-coupled version
superior.
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